
3.2: General Solutions of Linear Equations

Everything that we did in Section 3.1 for second-order linear equations
extends in a natural way to nth-order linear equations of the form

P0(x)y(n) + P1(x)y(n−1) + · · ·+ Pn−1(x)y′ + Pn(x)y = F (x) (1)

or
y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x). (2)

Again, if f(x) = 0 in (2) then the equation is homogeneous.

Theorem 1. (Principle of Superposition for Homogeneous Equations)
Let y1, y2,. . ., yn be n solutions to the homogeneous linear equation (2); i.e.
f(x) = 0. If c1, c2, . . . , cn are constants, then the linear combination

y = c1y1 + c2y2 + · · ·+ cnyn

is also a solution to (2).

Exercise 1. Verify that y1(x) = e−3x, y2(x) = cos 2x and y3(x) = sin 2x are
all solutions of

y(3) + 3y′′ + 4y′ + 12y = 0.

Find the general solution.

Theorem 2. (Existence and Uniqueness for Linear Equations)
Suppose that p1, p2, . . . , pn and f are continuous on I containing a. Then,
given n numbers b1, . . . , bn−1, the nth-order linear equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x)

has a unique solution on I with n initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1) = b)n− 1.

Definition 1. The n functions f1, . . . , fn are said to be linearly indepen-
dent on I provided there are no constants c1, . . . , cn (not all zero) such that

c1f1 + c2f2 + · · ·+ cnfn = 0

for all x ∈ I.



Example 1. The functions f1(x) = sin 2x, f2(x) = sin cosx, and f3(x) = ex

are linearly independent on R because

(1)f1 + (−2)f2 + (0)f3 = 0.

Definition 2. Given that f1, . . . , fn are all (n − 1) times differentiable, the
Wronskian is given by

W = det
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Theorem 3. (Wronskian of Solutions)
Suppose that y1, . . . , yn are n solutions to the homogeneous equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0

on an open interval I, where each pi is continuous.

(a) If y1, . . . , yn are linearly dependent, then W ≡ 0 on I.

(b) If y1, . . . , yn are linearly independent, then W 6= 0 at each x ∈ I.

Exercise 2. Use Theorem 3 to verify the linear independence and linear
dependence of Exercise 1 and Example 1 respectively.



Theorem 4. (General Solutions of Homogeneous Equations)
Let y1, . . . , yn be n linearly independent solutions of the homogeneous equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0.

If y is any solution to this equation, then there exists constants c1, . . . , cn ∈ R
such that

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

for all x ∈ I.

Consider the general nth-order linear equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x).

Call the a solution to this equation yp, the particular solution. If we were
to add any solution of the homogeneous equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0

to yp we would obtain another solution to the original equation. The solutions
to the homogeneous equation are therefore called complimentary solutions
and are often denoted by yc. Notice that the general form of yc is given by
Theorem 4.

Theorem 5. (Solutions of Nonhomogeneous Equations)
Let yp be a particular solution of the nonhomogeneous equation (2) on the
interval I, where each pi and f are continuous. Let y1, . . . , yn be n linearly
independent solutions of the associated homogeneous equation. Then for any
solution y, there exists constants c1, . . . , cn ∈ R such that

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x) = yc(x) + yp(x)

for all x ∈ I.



Exercise 3. It is evident that yp(x) = 3x is a particular solution of the
equation

y′′ + 4y = 12x,

and that yc(x) = c1 cos 2x + c2 sin 2x is its complimentary solution. Find a
solution that satisfies the initial conditions y(0) = 5, y′(0) = 7.

Homework. 1, 7-17, 21-25 (odd)


